advertisement

RAM Cards

                     


                 

SD RAM

Synchronous dynamic random access memory (SDRAM) is dynamic random access memory (DRAM) that is synchronized with the system bus. Classic DRAM has an asynchronous interface, which means that it responds as quickly as possible to changes in control inputs. SDRAM has a synchronous interface, meaning that it waits for a clock signal before responding to control inputs and is therefore synchronized with the computer's system bus. The clock is used to drive an internal finite state machine that pipelines incoming commands. The data storage area is divided into several banks, allowing the chip to work on several memory access commands at a time, interleaved among the separate banks. This allows higher data access rates than an asynchronous DRAM.
Pipelining means that the chip can accept a new command before it has finished processing the previous one. In a pipelined write, the write command can be immediately followed by another command, without waiting for the data to be written to the memory array. In a pipelined read, the requested data appears after a fixed number of clock cycles after the read command (latency), clock cycles during which additional commands can be sent. (This delay is called the latency and is an important performance parameter to consider when purchasing SDRAM for a computer.)


DDR RAM

Double data rate synchronous dynamic random-access memory (DDR SDRAM) is a class of memory integrated circuits used in computers. DDR SDRAM, also called DDR1 SDRAM, has been superseded by DDR2 SDRAM and DDR3 SDRAM, neither of which is either forward or backward compatible with DDR1 SDRAM -meaning that DDR2 or DDR3 memory modules will not work in DDR1-equipped motherboards, and vice versa.
Compared to single data rate (SDR) SDRAM, the DDR SDRAM interface makes higher transfer rates possible by more strict control of the timing of the electrical data and clock signals. Implementations often have to use schemes such as phase-locked loops and self-calibration to reach the required timing accuracy.[1][2] The interface uses double pumping (transferring data on both the rising and falling edges of the clock signal) to lower the clock frequency. One advantage of keeping the clock frequency down is that it reduces the signal integrity requirements on the circuit board connecting the memory to the controller. The name "double data rate" refers to the fact that a DDR SDRAM with a certain clock frequency achieves nearly twice the bandwidth of a SDR SDRAM running at the same clock frequency, due to this double pumping.
With data being transferred 64 bits at a time, DDR SDRAM gives a transfer rate of (memory bus clock rate) × 2 (for dual rate) × 64 (number of bits transferred) / 8 (number of bits/byte). Thus, with a bus frequency of 100 MHz, DDR SDRAM gives a maximum transfer rate of 1600 MB/s.


DDR2 RAM


DDR2 SDRAM is a double data rate synchronous dynamic random-access memory interface. It supersedes the original DDR SDRAM specification and has itself been superseded by DDR3 SDRAM. DDR2 is neither forward nor backward compatible with either DDR or DDR3.
In addition to double pumping the data bus as in DDR SDRAM (transferring data on the rising and falling edges of the bus clock signal), DDR2 allows higher bus speed and requires lower power by running the internal clock at half the speed of the data bus. The two factors combine to require a total of four data transfers per internal clock cycle. With data being transferred 64 bits at a time, DDR2 SDRAM gives a transfer rate of (memory clock rate) × 2 (for bus clock multiplier) × 2 (for dual rate) × 64 (number of bits transferred) / 8 (number of bits/byte). Thus with a memory clock frequency of 100 MHz, DDR2 SDRAM gives a maximum transfer rate of 3200 MB/s.
Since the DDR2 internal clock runs at half the DDR external clock rate, DDR2 memory operating at the same external data bus clock rate as DDR results in DDR2 being able to provide the same bandwidth but with higher latency. Alternatively, DDR2 memory operating at twice the external data bus clock rate as DDR may provide twice the bandwidth with the same latency. The best-rated DDR2 memory modules are at least twice as fast as the best-rated DDR memory modules.


DDR3 RAM

In computing, DDR3 SDRAM, an abbreviation for double data rate type three synchronous dynamic random access memory is a modern type of dynamic random access memory (DRAM) with a high bandwidth ("double data rate") interface, and has been in use since 2007. It is a higher-speed successor to DDR and DDR2 synchronous dynamic random access memory (SDRAM) chips. DDR3 SDRAM is neither forward nor backward compatible with any earlier type of random access memory (RAM) due to different signaling voltages, timings, and other factors.
DDR3 is a DRAM interface specification. The actual DRAM arrays that store the data are similar to earlier types, with similar performance.
The primary benefit of DDR3 SDRAM over its immediate predecessor, DDR2 SDRAM, is its ability to transfer data at twice the rate (eight times the speed of its internal memory arrays), enabling higher bandwidth or peak data rates. With two transfers per cycle of a quadrupled clock signal, a 64-bit wide DDR3 module may achieve a transfer rate of up to 64 times the memory clock speed megahertz (MHz) in megabytes per second (MB/s). With data being transferred 64 bits at a time per memory module, DDR3 SDRAM gives a transfer rate of (memory clock rate) × 4 (for bus clock multiplier) × 2 (for data rate) × 64 (number of bits transferred) / 8 (number of bits/byte). Thus with a memory clock frequency of 100 MHz, DDR3 SDRAM gives a maximum transfer rate of 6400 MB/s. In addition, the DDR3 standard permits DRAM chip capacities of up to 8 Gbit.

DDR4 RAM


In computing, DDR4 SDRAM, an abbreviation for double data rate fourth generation synchronous dynamic random-access memory, is a type of synchronous dynamic random-access memory (SDRAM) with a high bandwidth ("double data rate") interface, expected to be released to the market sometime in 2013.[2][3] It is one of the latest variants of dynamic random access memory (DRAM), some of which have been in use since the early 1970s,[4] and a proposed higher speed successor to the DDR2 and DDR3 technologies. It is not compatible with any earlier type of random access memory (RAM) due to different signaling voltages, physical interface and other factors.



Source wikipedia







Post a Comment

0 Comments